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INTRODUCTION 
 
Intestinal mucosa acts primarily as a barrier between 

inner part of the body and external environment. In 
livestock animals and humans, large quantities of various 
food antigens digested and absorbed are immunologically 

tolerable in general at intestinal mucosa. Morphology and 
characteristics of intestinal mucosa together with intestinal 
immune cells are constantly changing dependent on the 
food composition. A large number of pathogens, entering 
the body through the intestinal mucosa, are rapidly 
eliminated by protective mucosal immune responses. 
Otherwise, the intestine is normally home to many different 
commensal bacteria, continuously exposed to food proteins. 
As a result, the intestinal immune system must be able to 
discriminate harmless antigens from harmful ones (Wilson 
et al., 1996).  

Status of porcine intestinal immune system is immature 
at birth, which develops further during perinatal period and 
then reaches to adult values between 5 and 7 weeks of life. 
Gut epithelial cells communicate with intestinal innate 
immune system, forming a functional barrier to antigens 
from diet and pathogens. Toll-like receptors (TLRs) are 
emerging as a functionally important class of membrane 
and cytosolic receptors with key roles in recognition of 
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pathogens for innate immune modulation. Induction of 
adaptive immune responses begins with processing and 
presentation of antigen by specialized antigen presenting 
cells (Lee et al., 2014), in the organized tissues of the 
Peyer’s patches or mesenteric lymph nodes in the intestine 
(Gebert et al., 1996). One of the most important parts of 
adaptive intestinal immunity would be IgA responses, 
which require interactions between T and B lymphocytes 
(Cheon et al., 2014) within gut-associated lymphoid tissues.  

Livestock are exposed to various stressors including diet, 
temperature, weaning and infection. Abrupt changes of 
these stress factors influence animal health negatively, 
resulting in lower productivity. Such stressors often 
challenge homeostasis of animals by inducing systemic or 
local inflammatory responses coincident with neuro-
endocrine alteration. Considering the fact that gastro-
intestinal tract is tightly controlled by a reciprocal circuit 
composed of the immune system and neuro-endocrine 
system (Kayama and Takeda, 2012; Hayes et al., 2014), 
reducing stress would significantly improve gut 
homeostatic balance of livestock. 

Gut immunity is surely one of the most crucial factors in 
domestic animals that is largely responsible for growth 
performance and host health. This article will discuss the 
impacts of stress on gut health and immune status of pigs. 

 
GUT IMMUNITY IN PIGS UNDER  

VARIOUS STRESSORS 
 

Heat stress 
Climate change caused by global warming has forced 

high ambient temperatures in not only tropical regions, but 
also temperate regions. Heat stress (HS), therefore, is 
becoming a critical stress factor for health in the swine 
industry (Upadhyay, 2011). HS has affected an economic 
loss over 300 million USD per year in USA, and billions of 
dollars on a global scale (St-Pierre et al., 2003). It is, 
therefore, important to understand how HS is involving 
animal growth performance and health status in respect to 
nutritional and immune correlation, respectively.  

It has been shown that destruction of tight junction (TJ) 
proteins, such as claudin 1/3 and occludin, caused an 
increase of the permeability of porcine gut epithelial cells 
(Gu et al., 2014). Interestingly, however, HS induced 
increase of the gut permeability without changing the 
expression of the TJ proteins while there was up-regulation 
of GLUT-2 (Pearce et al., 2013). It is to note that activation 
of SGLT 1, NA+ and glucose co-transporter causes an 
increase in the permeability (Turner et al., 1997). Thus, the 
expression change of glucose transporter on epithelial cells 
in porcine by HS is directly associated with the permeability. 
Although, HS increased the permeability and the 

concentration of endotoxins in blood was increased over 
three times, inflammatory cytokines, such as interleukin 
(IL)-1β, IL-8 and tumor necrosis factor (TNF)-α, were not 
up-regulated (Pearce et al., 2013). Since it is well 
established that endotoxin (lipopolysaccharide, LPS) is 
strong inducer of the inflammatory cytokines this study left 
scope for discovering how this occurs. It is probable that 
either HS caused immune suppression in the animal (Meng 
et al., 2013) or LPS was not as high as it appeared due to i) 
a technical error, ii) structural differences (Trent et al., 
2006), iii) differential composition (Im et al., 2015; Lam et 
al., 2011) or iv) binding proteins of LPS (Lam et al., 2011; 
Im et al., 2015). It could well be that HS together with LPS 
does not induce all pro-inflammatory cytokines and perhaps 
are linked with specific cytokines such as IL-17 and/or 
transforming growth factor-β (TGF-β) which are in relation 
with regulatory T (Treg) and Th17 T cells. For example, the 
colonization of probiotics, such as Lactobacillus rhamnosus 
strain GG and Bifidobacterium lactis Bb12, in gnotobiotic 
pigs impacted to stable the balance of TGF-β and IL-17 
after rotavirus challenge (Chattha et al., 2013). It has been 
also suggested that heat shock protein 70 (Pearce et al., 
2014) and myeloperoxidase activity as the activation 
marker of neutrophils (Pearce et al., 2013) were increased 
under HS in porcine gut. This indirectly suggests that unlike 
the previous report by the same group, HS induces the 
inflammatory responses in intestine of pigs.  

Taken together, HS induces alteration of barrier function 
coincident with gut inflammation in pigs. It appears that the 
influence of HS together with the solution to overcome the 
effects of HS on pigs’ immune system in relation to 
systemic and local inflammation should be further 
investigated.  

 
Nutritional stress 

Growth performance is the most critical factor for 
producers in the pig industry. Therefore, nutritional stress 
would be the greatest, if not the only, concern for them 
(Shen et al., 2014; Zhao et al., 2014). In general, fasting 
negatively impacts porcine gut health in terms of 
physiology and immunology. Deprivation of feed and/or 
water for 24 hrs raised the level of cortisol in blood, and 
suppressed TNF-α expression in jejunum of weaned pigs. 
Interestingly, there were no disruption of the TJ proteins, 
including claudin-1, occludin and zonula occludens protein-
1 (ZO-1) in jejunum and ileum (Horn et al., 2014). Lacking 
glycine reduced the cell proliferation and protein synthesis, 
while apoptosis was increased in porcine gut epithelial cells. 
Coincidently, activation of both Akt and mammalian target 
of rapamycin (m-TOR) was reduced (Wang et al., 2014).  

Mycotoxin is one of the major factors to contaminate 
animal feed causing nutritional stress (Weaver et al., 2014a). 
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Deoxynivalenol (DON) disrupted the expression of the TJ 
proteins such as ZO-1, occludin and claudin-3, and 
permeability of porcine gut epithelial cells within 48 hrs 
(Gu et al., 2014; 2016). DON stimulated pro-inflammatory 
cytokines like TNF-α, IL-6, and IL-1β expression in 
jejunum and ileum (Bracarense et al., 2012) and increased 
the number of lymphocytes (Wu et al., 2015). It is apparent 
that TLR2 ligand can prevent the damage of porcine gut 
epithelial cells treated with DON (Gu et al., 2016). 
Fumonisin B1 (FB1) increased the permeability in porcine 
jejunum at over 10 days post stimulation (Bouhet et al., 
2004) whilst DON took only 2 days to reach the similar 
level of the permeability (Gu et al., 2014). FB1 appeared to 
down-regulate the expression of IL-8 without changing 
other inflammatory cytokines, IL-6, IL-1β, IL-12p40, and 
TNF-α (Bouhet et al., 2006). It is likely that FB1 has 
relatively weak immunological effects on porcine gut 
epithelial cells when compared to those of DON. Chronic 
feeding with the combination of aflatoxin and DON for 33 
to 42 days increased the number of monocytes and white 
blood cells coincident with high concentration of TNF-α in 
blood while a single treatment did not show such an impact 
(Chaytor et al., 2011; Weaver et al., 2013). It was noted that 
a combination of DON and zearalenone feeding for a long 
time increased twice the level of 8-hydroxy-
deoxyguanosine indicating oxidative stress, together with 
DNA oxidative damage (Weaver et al., 2014b). For 
inflammatory cytokines including IL-12/IL-23p40 and IL-
1β, and vasoactive intestinal peptides were increased in 
ileum Peyer’s patches after 42 days feeding of zearalenone 
(0.1 mg/kg) to pigs (Obremski et al., 2015a). While feeding 
of zearalenone (0.1 mg/kg) to pigs for 28 days induced a 
reduction of CD21+ B cells while increasing interferon 
(IFN)-γ concentration in ileocecal lymph nodes (Obremski 
et al., 2015b) suggesting that it may alter B cell responses. 
In addition, T-2 toxin reduced viability of intestinal 
epithelial cells in pigs infected with Salmonella 
Typhimurium. Although T-2 toxin did not alter the integrity 
of porcine gut epithelial cells, it increased translocation of 
bacteria (Verbrugghe et al., 2012). Chronic exposure of T-2 
toxin at low dose by feeding for 21 days decreased the 
proportion of CD21+ B cells gradually from ileal Peyer’s 
patches. Besides, gene expression profiles of cytokines in T 
cells, such as IL-2, IL-4, and IFN-γ were not changed under 
the same condition (Obremski et al., 2013).  

Conclusively, nutritional deficiency or ingestion with 
contaminated feed induces the change of intestinal pro-
inflammatory cytokines and modulates barrier function in 
pigs. The immunological mechanism by which nutritional 
stress induces the modulation of gut immune system 
resulting in weak host response is yet to be defined.  

 

Infectious stress 
Enteric and respiratory infections are the most frequent 

and recurrent diseases in swine industry. Especially, enteric 
infection is one of major stressors causing low productivity 
in farm animals since it is known to suppress the feed 
conversion efficiency (Kiarie et al., 2011; Yang et al., 2014). 
Unlike other type of stressors, infectious stress is not easy 
to control and often causes long-term economic loss. Once 
there is an outbreak, transmission within and between the 
batches of animals occurs very fast because most modern 
animal farms have adopted intensive rearing system. At the 
same time, it is difficult to clear the pathogens completely 
from the site and region of the outbreak without a mass 
slaughter operation. 

Most enteric pathogens come into contact with the 
animal from drinking water, feeds, or feces from other 
infected animals. After gaining access to the gut of the 
target animal, enteric pathogens generally disrupt the 
homeostasis of the epithelial barrier. Some pathogens 
including Escherichia coli induce intestinal damage through 
osmotic stress causing secretory diarrhea while others cause 
diarrhea by up-regulating pro-inflammatory cytokines, 
producing so called inflammatory diarrhea (Fairbrother et 
al., 2005). Enteric pathogens are known to suppress feed 
intake and feed conversion, which causes unnecessary 
energy loss for activating immune system. The main causes 
of enteric diseases in the swine industry are: E. coli, porcine 
epidemic diarrhea virus (PEDV), porcine delta coronavirus 
(PDCoV), and transmissible gastroenteritis coronavirus 
(TGEV). 

E. coli is gram-negative, enteric bacteria composed of 
several strains, although some are pathogenic most are 
commensal. Pathogenic E. coli, also called enterotoxigenic 
E. coli (ETEC), has been known to cause diarrhea 
accompanied by dehydration, inhibition of the feed 
conversion and growth performance. It was also reported 
that ETEC shortened the length of villus and the depth of 
crypt of small intestine. It also inhibited the expression of 
TJ of intestinal epithelial cells by loosening the epithelial 
barrier. Supplementation of Lactobacillus plantarum (Yang 
et al., 2014), Saccharaomyces cerevisiae boulardii (Collier 
et al., 2011), chitosan (Xiao et al., 2013) or vasoactive 
intestinal peptide (Xu et al., 2014) has been reported to 
alleviate the infection stress of ETEC. 

PEDV is an enteric coronavirus which had been 
prevalent only in East Asia, but there have been frequent 
outbreaks in America since 2013. Once PEDV appears, 
animal farms seem to suffer chronically because no strategy 
or treatment is available, even antibiotics have no effect 
(Song and Park, 2012). It was suggested that PEDV 
changed the microfilaments inside the epithelial cells 
followed by increase of permeability of the epithelial barrier 
through TLR 2, 3, and 9 (Cao et al., 2015). Not only 
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epithelial cells but also the immune cells could be targeted 
by this virus since most immune cells are expressing TLRs. 
B cells located in mucosal tissues such as duodenum lamina 
propria produced much more IgG and IgA than those in 
systemic lymphoid tissues, spleen and blood (de Arriba et 
al., 2002). In pigs infected with PEDV, monocyte-derived 
dendritic cells produced a large amount of pro-
inflammatory cytokines including IL-12 coincident with 
enhancing T-cell proliferation when co-cultured (Gao et al., 
2015). 

PDCoV and TGEV are less prevalent than E. coli or 
PEDV but they are still critical enteric coronaviruses in 
swine industry. PDCoV was once detected in Hong Kong 
(2009) and USA (2014). The pathology of PDCoV includes 
dehydration, loss of body weight but with less severe 
symptoms compared to other pathogens (Chen et al., 2015). 
However, it is important to note that PDCoV showed 
synergic pathology when co-infected with PEDV. TGEV 
was often reported in Asia and America causing vomiting 
and even death in piglets, when severe. It is assumed that 
this virus is derived from the same ancestor as porcine 
respiratory coronavirus which infects respiratory tracts 
(Kim et al., 2000). 

In conclusion, infectious stress causes persistent 
economic loss of swine industry, especially with chronic 
infection. Research may have been biased to the treatment 
and eradication of the pathogens using treatment like 
antibiotics or vaccines. However, how to increase the 
disease tolerance in domestic animals against infection is 
not well understood. It is time to extend our effort to 
understand infectious stress affecting animal health and 

growth performance.  
 

CONCLUSION 
 
Various stressors are threatening the health and, at the 

same time, suppressing the growth performance in farm 
animals. The present paper focused on major stress factors, 
including thermal, nutritional and infectious, in relation to 
gut immunity in pigs. Numerous studies focusing on 
stresses in conjunction with porcine gut examined TJ 
proteins for the permeability, pro-inflammatory cytokines 
and/or gene profiles (Table 1). However, we do not know 
enough today to fully explain the precise mechanism of the 
gut immune system in pigs under stress conditions. In 
addition, the pig’s immune system cannot be directly 
extrapolated from that of humans and mice, for instance, 
CD4+CD8+ T cells in peripheral immune system (Cheon et 
al., 2014). In the near future, studies are expected to define 
i) the identification and the function of immune cells like 
innate lymphoid cells in intestine, ii) the immunological 
interaction between immune cells and gut epithelial cells 
under major stresses, iii) the alteration of intestinal immune 
system by major stresses to systemic immune responses and 
iv) gut health leading host immune system under multi-
stress condition in pigs. 
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Table 1. i) The impact of major stresses on gut immunity 

Stressor Condition Sample Change Reference 

Heat 35°C for 24 hrs Ileum GLUT2 (1.5 times), HSP70 (2 times) and HIF-1α (1.5 
times) were upregulated 
Myeloperoxidase activity was increased by 4 U/mg 

(Pearce et al., 2013)

Ileum and colon The permeability measured by using TER and FITC-
dextran transport was increased 

Serum Endotoxin was increased by more than 3 times 

37°C for 6 hrs Ileum Mucin 2 was increased by 0.35 ng/mL at 6 hrs post heat 
stress 
Villi height was deceased by 181 μm at 6 hrs post heat 
stress 

(Pearce et al., 2014)

Colon HSP70 was increased more than twice at 2 hrs post heat 
stress 
The permeability measured by TER, FITC-dextran 
transport was increased at 2 hrs post heat stress 

Serum LBP was decreased at 2 hrs post heat stress 
Endotoxin showed the tendency for a linear increase over 
time 

hrs, hours; GLUT2, glucose transporter 2; HSP70, heat shock protein 70; HIF-1α, hypoxia-inducible factor 1-alpha; TER, transepithelial electrical 
resistance; FITC, fluorescein isothiocyanate; LBP, LPS binding protein; TNF-α, tumor necrosis factor-α; DON, deoxynivalenol; m-TOR, mammalian 
target of rapamycin; WBC, white blood cell; ADG, average daily gain; TER, transepithelial electrical resistance; ZO-1, zonula occludens protein-1; FB, 
fumonisin B; PEDV, porcine epidemic diarrhea virus; IECs, porcine small intestinal epithelial cells; GRP78, glucose regulated protein 78; dpi, days post 
inoculation; MNC, mononuclear cells; ASC, antibody secreting cells; MLN, mesenteric lymph nodes; MOI, multiplicity of infection; Mo-DCs, monocyte-
derive dendritic cells; PDCoV, porcine deltacoronavirus. 
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Table 1. ii) The impact of major stresses on gut immunity (Continued) 

Stressor Condition Sample Change Reference 

Nutrition Feed deprivation for 24 hrs Jejunum Gene expression of TNF-α was decreased by 4 times (Horn et al., 2014)

Serum Cortisol was increased by 14 ng/mL  

Glycine depletion IPEC-1 Apoptosis was increased by more than 10% 
Activation of Art and m-TOR was reduced by more than 
half 

(Wang et al., 2014)

180 μg/kg of AF and 900 
μg/kg of DON for 33 d 

Serum WBC increased from 18.4 to 23.4×103×103/µL 
TNFα increased from 299 to 335 pg/mL 
Feed intake reduced from 1.04 to 0.88 kg/d 
ADG was reduced from 0.52 to 0.41 kg/d 

(Chaytor et al., 
2011) 

150 μg/kg of AF and 1,100 
μg/kg of DON for 42 d 

Serum Basophil increased from 0.09 to 0.16×103/µL 

Monocyte increased from 0.97 to 1.43×103/µL 
IgG increased from 10.5 to 15.1 mg/mL 
IgM increased from 3.02 to 4.39 mg/mL 

(Weaver et al., 
2013) 

2 μg/mL of DON for 48 hrs IPEC-J2 ZO-1, occludin and claudin-3 were decreased 
Permeability was increased 

(Gu et al., 2014)

2.8 mg of DON/kg feed for 
35 d 

Jejunum Lesion score was increased by 6 times 
Villi was flattened coincident with decreased villi height 
Number of goblet cells (3 cells in 1.5 mm2) and 
lymphocytes (10 cells in 1.5 mm2) were decreased 
Gene expression of IL-1β (1.78 times), IL-6 (2.17 times), 
MIP-1β (1.42 times), IL-2 (1.8 times) and IL-12p40 (1.71 
times) was increased 

(Bracarense et al., 
2012) 

Ileum Lesion score was increased by 6 times 
Gene expression of IL-1β (2 times), TNF-α (1.49 times) 
and IL-6 (2.13 times) was increased 
E-cadherin and occludin were decreased by more than half 

5.9 mg of FB (4.1 mg FB1 
+1.8 mg FB2)/kg feed for 
35 d 

Jejunum Lesion score was increased by 4 times 
The numbers of eosinophils (5 cells in 1.5 mm2) and 
plasma cells (18 cells in 1.5 mm2) were increased 
Gene expression of IFN-γ (1.43 times) and IL-10 (1.51 
times) was increased 

Ileum Lesion score was increased by 4 times 
Gene expression of IL-1β (1.73 times) and TNF-α (1.42 
tiems) were increased 
Gene expression of occludin was decreased by half 

0.5 mg of FB1/kg of body 
weight/day for 7 d 

Ileum Gene expression of IL-8 was decreased (Bouhet et al., 2006)

0-100 μM (0 to 72.2 mg/L) 
of FB1 for 4 d 

IPEC-1 IL-8 was decreased in a dose-dependent manner  

0-500 μM FB1 for 28 d IPEC-1 The integrity measured by TER was decreased at 10 days 
post treatment  

(Bouhet et al., 2004)

    

0.1 mg/kg of zearalenone 
for 42 d 

Ileum Peyer’s 
patches 

Inflammatory cytokines, including IL-12/IL-23p40 and IL-
1β, and vasoactive intestinal peptide were up-regulated 
significantly 

(Obremski et al., 
2015a) 

0.1 mg/kg of zearalenone 
for 28 d 

Ileocecal lymph 
nodes 

CD21+ B cells were reduced but, IFN-γ concentration was 
increased significantly 

(Obremski et al., 
2015b) 

2.5 ng/mL of T-2 toxin for 
24 hrs 

IPEC-J2 Viability of intestinal epithelial cells was reduced in half 
under Salmonella Typhimurium infection condition  

(Verbrugghe et al., 
2012) 

1 ng/mL of T-2 toxin for 30 
min 

 Translocation of Salmonella Typhimurium was 
significantly increased 

 

0.2 mg/kg of T-2 toxin for 
21 d 

Ileal Peyer’s 
patches 

CD21+ B cells were reduced by about 19% (Obremski et al., 
2013) 

hrs, hours; GLUT2, glucose transporter 2; HSP70, heat shock protein 70; HIF-1α, hypoxia-inducible factor 1-alpha; TER, transepithelial electrical 
resistance; FITC, fluorescein isothiocyanate; LBP, LPS binding protein; TNF-α, tumor necrosis factor-α; DON, deoxynivalenol; m-TOR, mammalian 
target of rapamycin; WBC, white blood cell; ADG, average daily gain; TER, transepithelial electrical resistance; ZO-1, zonula occludens protein-1; FB, 
fumonisin B; PEDV, porcine epidemic diarrhea virus; IECs, porcine small intestinal epithelial cells; GRP78, glucose regulated protein 78; dpi, days post 
inoculation; MNC, mononuclear cells; ASC, antibody secreting cells; MLN, mesenteric lymph nodes; MOI, multiplicity of infection; Mo-DCs, monocyte-
derive dendritic cells; PDCoV, porcine deltacoronavirus. 
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